it's a small gaming device. this can make even the kids. it is very simple and easy project
#include "SD.h"
#include "adafruit_1947_Obj.h"
#include "screen.h"
#include "ourOSObj.h"
ourOSObj ourOS;
void setup() {
Serial.begin(57600); // Fire up serial for debugging.
if (!initScreen(ADAFRUIT_1947,ADA_1947_SHIELD_CS,PORTRAIT)) { // Init screen.
Serial.println("NO SCREEN!"); // Screen init failed. Tell user.
Serial.flush(); // Make sure the message gets out.
while(true); // Lock the process here.
}
if (!SD.begin(ADA_1947_SHIELD_SDCS)) { // With icons, we now MUST have an SD card.
Serial.println("NO SD CARD!"); // Tell user we have no SD card.
Serial.flush(); // Make sure the message gets out.
while(true); // Lock the process here.
}
ourEventMgr.begin(); // Startup our event manager.
ourOS.begin(); // Boot OS manager.
nextPanel = breakoutApp; // <<-- URISH LOOK HERE!!
}
void loop() { // During loop..
idle(); // Idlers get their time.
ourOS.loop(); // ourOS gets time to pass on to the current panel.
}
it is small eletronic safe. the user can only open with a specific password
#include "LiquidCrystal.h"
#include "Keypad.h"
#include "Servo.h"
#include "SafeState.h"
#include "icons.h"
/* Locking mechanism definitions */
#define SERVO_PIN 6
#define SERVO_LOCK_POS 20
#define SERVO_UNLOCK_POS 90
Servo lockServo;
/* Display */
LiquidCrystal lcd(12, 11, 10, 9, 8, 7);
/* Keypad setup */
const byte KEYPAD_ROWS = 4;
const byte KEYPAD_COLS = 4;
byte rowPins[KEYPAD_ROWS] = {5, 4, 3, 2};
byte colPins[KEYPAD_COLS] = {A3, A2, A1, A0};
char keys[KEYPAD_ROWS][KEYPAD_COLS] = {
{'1', '2', '3', 'A'},
{'4', '5', '6', 'B'},
{'7', '8', '9', 'C'},
{'*', '0', '#', 'D'}
};
Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, KEYPAD_ROWS, KEYPAD_COLS);
/* SafeState stores the secret code in EEPROM */
SafeState safeState;
void lock() {
lockServo.write(SERVO_LOCK_POS);
safeState.lock();
}
void unlock() {
lockServo.write(SERVO_UNLOCK_POS);
}
void showStartupMessage() {
lcd.setCursor(4, 0);
lcd.print("Welcome!");
delay(1000);
lcd.setCursor(0, 2);
String message = "ArduinoSafe v1.0";
for (byte i = 0; i < message.length(); i++) {
lcd.print(message[i]);
delay(100);
}
delay(500);
}
String inputSecretCode() {
lcd.setCursor(5, 1);
lcd.print("[____]");
lcd.setCursor(6, 1);
String result = "";
while (result.length() < 4) {
char key = keypad.getKey();
if (key >= '0' && key <= '9') {
lcd.print('*');
result += key;
}
}
return result;
}
void showWaitScreen(int delayMillis) {
lcd.setCursor(2, 1);
lcd.print("[..........]");
lcd.setCursor(3, 1);
for (byte i = 0; i < 10; i++) {
delay(delayMillis);
lcd.print("=");
}
}
bool setNewCode() {
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Enter new code:");
String newCode = inputSecretCode();
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Confirm new code");
String confirmCode = inputSecretCode();
if (newCode.equals(confirmCode)) {
safeState.setCode(newCode);
return true;
} else {
lcd.clear();
lcd.setCursor(1, 0);
lcd.print("Code mismatch");
lcd.setCursor(0, 1);
lcd.print("Safe not locked!");
delay(2000);
return false;
}
}
void showUnlockMessage() {
lcd.clear();
lcd.setCursor(0, 0);
lcd.write(ICON_UNLOCKED_CHAR);
lcd.setCursor(4, 0);
lcd.print("Unlocked!");
lcd.setCursor(15, 0);
lcd.write(ICON_UNLOCKED_CHAR);
delay(1000);
}
void safeUnlockedLogic() {
lcd.clear();
lcd.setCursor(0, 0);
lcd.write(ICON_UNLOCKED_CHAR);
lcd.setCursor(2, 0);
lcd.print(" # to lock");
lcd.setCursor(15, 0);
lcd.write(ICON_UNLOCKED_CHAR);
bool newCodeNeeded = true;
if (safeState.hasCode()) {
lcd.setCursor(0, 1);
lcd.print(" A = new code");
newCodeNeeded = false;
}
auto key = keypad.getKey();
while (key != 'A' && key != '#') {
key = keypad.getKey();
}
bool readyToLock = true;
if (key == 'A' || newCodeNeeded) {
readyToLock = setNewCode();
}
if (readyToLock) {
lcd.clear();
lcd.setCursor(5, 0);
lcd.write(ICON_UNLOCKED_CHAR);
lcd.print(" ");
lcd.write(ICON_RIGHT_ARROW);
lcd.print(" ");
lcd.write(ICON_LOCKED_CHAR);
safeState.lock();
lock();
showWaitScreen(100);
}
}
void safeLockedLogic() {
lcd.clear();
lcd.setCursor(0, 0);
lcd.write(ICON_LOCKED_CHAR);
lcd.print(" Safe Locked! ");
lcd.write(ICON_LOCKED_CHAR);
String userCode = inputSecretCode();
bool unlockedSuccessfully = safeState.unlock(userCode);
showWaitScreen(200);
if (unlockedSuccessfully) {
showUnlockMessage();
unlock();
} else {
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Access Denied!");
showWaitScreen(1000);
}
}
void setup() {
lcd.begin(16, 2);
init_icons(lcd);
lockServo.attach(SERVO_PIN);
/* Make sure the physical lock is sync with the EEPROM state */
Serial.begin(115200);
if (safeState.locked()) {
lock();
} else {
unlock();
}
showStartupMessage();
}
void loop() {
if (safeState.locked()) {
safeLockedLogic();
} else {
safeUnlockedLogic();
}
}
You can control the colorful buttons with your keyboard: After starting the simulation, click anywhere in the diagram to focus it. Then press any key between 1 and 8 to play the piano.
#include "SD.h"
#include "adafruit_1947_Obj.h"
#include "screen.h"
#include "ourOSObj.h"
ourOSObj ourOS;
void setup() {
Serial.begin(57600); // Fire up serial for debugging.
if (!initScreen(ADAFRUIT_1947,ADA_1947_SHIELD_CS,PORTRAIT)) { // Init screen.
Serial.println("NO SCREEN!"); // Screen init failed. Tell user.
Serial.flush(); // Make sure the message gets out.
while(true); // Lock the process here.
}
if (!SD.begin(ADA_1947_SHIELD_SDCS)) { // With icons, we now MUST have an SD card.
Serial.println("NO SD CARD!"); // Tell user we have no SD card.
Serial.flush(); // Make sure the message gets out.
while(true); // Lock the process here.
}
ourEventMgr.begin(); // Startup our event manager.
ourOS.begin(); // Boot OS manager.
nextPanel = breakoutApp; // <<-- URISH LOOK HERE!!
}
void loop() { // During loop..
idle(); // Idlers get their time.
ourOS.loop(); // ourOS gets time to pass on to the current panel.
}
this project is small alaram system, we can adjust the minute and houre and aleram, when the time reach the aleram should ring
#include "SevSeg.h"
#include "Button.h"
#include "AlarmTone.h"
#include "Clock.h"
#include "config.h"
const int COLON_PIN = 13;
const int SPEAKER_PIN = A3;
Button hourButton(A0);
Button minuteButton(A1);
Button alarmButton(A2);
AlarmTone alarmTone;
Clock clock;
SevSeg sevseg;
enum DisplayState {
DisplayClock,
DisplayAlarmStatus,
DisplayAlarmTime,
DisplayAlarmActive,
DisplaySnooze,
};
DisplayState displayState = DisplayClock;
long lastStateChange = 0;
void changeDisplayState(DisplayState newValue) {
displayState = newValue;
lastStateChange = millis();
}
long millisSinceStateChange() {
return millis() - lastStateChange;
}
void setColon(bool value) {
digitalWrite(COLON_PIN, value ? LOW : HIGH);
}
void displayTime() {
DateTime now = clock.now();
bool blinkState = now.second() % 2 == 0;
sevseg.setNumber(now.hour() * 100 + now.minute());
setColon(blinkState);
}
void clockState() {
displayTime();
if (alarmButton.read() == Button::RELEASED && clock.alarmActive()) {
// Read alarmButton has_changed() to clear its state
alarmButton.has_changed();
changeDisplayState(DisplayAlarmActive);
return;
}
if (hourButton.pressed()) {
clock.incrementHour();
}
if (minuteButton.pressed()) {
clock.incrementMinute();
}
if (alarmButton.pressed()) {
clock.toggleAlarm();
changeDisplayState(DisplayAlarmStatus);
}
}
void alarmStatusState() {
setColon(false);
sevseg.setChars(clock.alarmEnabled() ? " on" : " off");
if (millisSinceStateChange() > ALARM_STATUS_DISPLAY_TIME) {
changeDisplayState(clock.alarmEnabled() ? DisplayAlarmTime : DisplayClock);
return;
}
}
void alarmTimeState() {
DateTime alarm = clock.alarmTime();
sevseg.setNumber(alarm.hour() * 100 + alarm.minute(), -1);
if (millisSinceStateChange() > ALARM_HOUR_DISPLAY_TIME || alarmButton.pressed()) {
changeDisplayState(DisplayClock);
return;
}
if (hourButton.pressed()) {
clock.incrementAlarmHour();
lastStateChange = millis();
}
if (minuteButton.pressed()) {
clock.incrementAlarmMinute();
lastStateChange = millis();
}
if (alarmButton.pressed()) {
changeDisplayState(DisplayClock);
}
}
void alarmState() {
displayTime();
if (alarmButton.read() == Button::RELEASED) {
alarmTone.play();
}
if (alarmButton.pressed()) {
alarmTone.stop();
}
if (alarmButton.released()) {
alarmTone.stop();
bool longPress = alarmButton.repeat_count() > 0;
if (longPress) {
clock.stopAlarm();
changeDisplayState(DisplayClock);
} else {
clock.snooze();
changeDisplayState(DisplaySnooze);
}
}
}
void snoozeState() {
sevseg.setChars("****");
if (millisSinceStateChange() > SNOOZE_DISPLAY_TIME) {
changeDisplayState(DisplayClock);
return;
}
}
void setup() {
Serial.begin(115200);
clock.begin();
hourButton.begin();
hourButton.set_repeat(500, 200);
minuteButton.begin();
minuteButton.set_repeat(500, 200);
alarmButton.begin();
alarmButton.set_repeat(1000, -1);
alarmTone.begin(SPEAKER_PIN);
pinMode(COLON_PIN, OUTPUT);
byte digits = 4;
byte digitPins[] = {2, 3, 4, 5};
byte segmentPins[] = {6, 7, 8, 9, 10, 11, 12};
bool resistorsOnSegments = false;
bool updateWithDelays = false;
bool leadingZeros = true;
bool disableDecPoint = true;
sevseg.begin(DISPLAY_TYPE, digits, digitPins, segmentPins, resistorsOnSegments,
updateWithDelays, leadingZeros, disableDecPoint);
sevseg.setBrightness(90);
}
void loop() {
sevseg.refreshDisplay();
switch (displayState) {
case DisplayClock:
clockState();
break;
case DisplayAlarmStatus:
alarmStatusState();
break;
case DisplayAlarmTime:
alarmTimeState();
break;
case DisplayAlarmActive:
alarmState();
break;
case DisplaySnooze:
snoozeState();
break;
}
}